Exercise 13

For the following exercises, find a domain on which each function f is one-to-one and non-decreasing. Write the domain in interval notation. Then find the inverse of f restricted to that domain.

$$
f(x)=(x+7)^{2}
$$

Solution

This function is not one-to-one because it fails the horizontal line test.

But it can be made one-to-one by taking the restriction of $f(x)$ to $x \geq-7$.

The domain on which $f(x)=(x+7)^{2}$ is one-to-one and non-decreasing is $[-7, \infty)$. To find the inverse, switch x and y.

$$
x=(y+7)^{2}
$$

Solve for y. Take the square root of both sides.

$$
\sqrt{x}=\sqrt{(y+7)^{2}}
$$

Since there's an even power under an even root and the result is odd, an absolute value sign is needed.

$$
\sqrt{x}=|y+7|
$$

Remove the absolute value sign by placing \pm on the left side.

$$
\pm \sqrt{x}=y+7
$$

Subtract 7 from both sides.

$$
y= \pm \sqrt{x}-7
$$

In order to decide whether to choose the plus or minus sign, notice that y originally came from x, which has the domain $[-7, \infty)$. Choosing the minus sign would allow values of y less than -7 . Therefore, the inverse function is

$$
f^{-1}(x)=\sqrt{x}-7 .
$$

